Přirozený skleníkový efekt Země rozhoduje o zachování života. Spalování fosilních paliv nebo kácení lesů skleníkový efekt zesiluje a hovoříme o globálním oteplování. Pojem skleníkový efekt však vznikl z chybné analogie s účinkem slunečního světla procházejícího sklem a ohřívajícího skleník. Skleník však zachovává teplo odlišně. Většinou sníží proud vzduchu pro zachování teplého vzduchu uvnitř.
Každý skleníkový plyn pohlcuje jen určité frekvence záření. Oblasti označujeme jako absorpční pásy a u některých plynů se překrývají. Proto se nedá určit přesný vliv plynů na skleníkovém efektu a známe jen procentuální rozsah. Jejich koncentrace v atmosféře se vyjadřují v jednotkách ppm – parts per million, což je asi miliontina.
Vodní pára
Obsah vodní páry – plynné vlhkosti ve vzduchu, se mění dle počasí a polohy na Zemi. Lidskou činností jí v atmosféře moc nepřibývá. Na skleníkovém efektu se podílí z 36 až 70 %. Maximální množství páry, které se ve vzduchu udrží, s teplotou roste a její množství v atmosféře je fyzikálně omezeno zkapalněním a deštěm.
Oxid uhličitý – CO2
Oxid uhličitý vzniká přirozeně dýcháním rostlin i živočichů i hořením lesů. Vlivem člověka – antropogenně vzniká spalováním fosilních paliv i výrobou cementu. Podle NASA v atmosféře CO2 vydrží 300 až 1000 let. Na skleníkovém efektu se podílí z 9 až 26 %. Od roku 1750 se obsah v atmosféře zvýšil o 47 %. Koncentrace v atmosféře byla v 800 000 letech 180 až 300 ppm. V roce 2020 činila 415 ppm.
CO2 a jiné skleníkové plyny zesilují vliv vodní páry. Ohřevem atmosféry zvyšují schopnost vzduchu vodní páru udržet a zesilují výpar vody. Vyšší množství páry ve vzduchu zesiluje skleníkový efekt a zvyšuje teplotu atmosféry.
Metan – CH₄
Metan je silnější skleníkový plyn než CO2. Vzniká rozkladnými procesy v mokřadech a termitištích nebo při chovu dobytka, pěstování rýže a na skládkách. Na skleníkovém efektu má podíl 4 až 9 %. Koncentrace CH₄ roste, nyní je 1,9 ppm, což je 200x méně než CO2.
Ozón – O3
Ozón se na skleníkovém efektu podílí z 3 až 7 %. Je v atmosféře potřebný, protože nepropouští UV záření. Na rozdíl od většiny plynů se nachází výše ve stratosféře.
Oxid dusný – N₂O
Silný skleníkový plyn N₂O je v koncentracích asi 0,33 ppm a setrvá v atmosféře 114 let. Ve stoletém horizontu je 300x silnější než CO2. Asi 2/3 jeho emisí do atmosféry jsou přirozené a 1/3 způsobují dusíkatá hnojiva a emise ze spalovacích motorů.
CFC a HCFC
Chlorfluorované a hydrochlorofluorované uhlovodíky neboli tvrdé a měkké freony jsou umělého původu. Používaly se jako chladiva do ledniček a klimatizací, plnidla plastů a izolanty. Jsou to velmi silné plyny a narušují ozónovou vrstvu.
GWP – Global warming potential – potenciál globálního oteplování
CO2 je nejběžnější antropogenní skleníkový plyn a schopnost jiných plynů pohlcovat záření se přepočítává na něj. K přepočtu slouží veličina GWP100, GWP20 a GWP500. GWP bere v úvahu, jak silně daný plyn pohlcuje záření a jak dlouho setrvá v atmosféře. Hodnota GWP ukazuje, kolik kg CO2 by mělo na skleníkový efekt stejný vliv jako 1 kg daného plynu během 100, 20 a 500 let.
Plyn |
Životnost v atmosféře |
GWP 20 |
GWP 100 |
GWP 500 |
Oxid uhličitý |
300 – 1000 let |
1 |
1 |
1 |
Metan |
12 let |
72 |
25 |
7,6 |
Oxid dusný |
114 let |
289 |
298 |
153 |
CFC-11 |
45 let |
6730 |
4750 |
1620 |
CFC-12 |
100 let |
11000 |
10900 |
5200 |
HCFC-22 |
12 let |
5160 |
1810 |
549 |